Understanding VME Bus

Michael Davidsaver mdavidsaver@bnl.gov

Rev. 1

Image: A math a math

æ

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus

Goals

- Become familiar with language of VME operations
- Interpret VMetro bus analyzer data.

イロト イ団ト イヨト イヨト

æ

VME VERSAmodule Eurocard
 Backplane The connectors (slots) and wiring at the back of a VME crate
 System Controller Card in slot 1. Special role in bus arbitrartion. Must be populated. Usually a Master.
 Master The initiator of a transfer. Usually a CPU card. This is where software "lives".

Slave Other party in a transfer.

<mark>Overvi</mark> Physic Logica

VME vs. PCI

VME

- Asynchronous
 - Ordering is key
- Un-clocked
 - Max. bandwidth not well defined

PCI

- Synchronous
 - Timing is key
- Clocked (33 or 66 MHz)
 - Max. bandwidth well defined

< ロ > < 同 > < 三 > < 三 >

æ

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus

Operations Errors VMetro Overview Physical Logical

Physical Wires

- Two connectors: P1 and P2
- VME32 (right)
 - 3 rows of 32 pins each.
 - $32 \times 3 \times 2 = 192$
- VME64 (left)
 - 5 rows of 32 pins each.
 - $32 \times 5 \times 2 = 320$
- Can plug VME64 card into VME32 crate and vice versa

	107 11 4
ELL.	
POLE & B POLE	
	0 0
	XXX P
	X X X X Y
	Y X X X
PERSONAL PROPERTY AND	
PER NUMBER	
P 1 1 1 1	
	1110
PAREM	0 3 3 3 1 100
POLICE M	
P L L L M	
P III I	
	111 10
	1110
No. I I I I	
PER A A MAIN	
PEREM	1 1 1 1 0
P H H H H	A X X X
PARK N	333 5
	A A A A A

Overview Physical Logical

VME32 Signal Groups

- Addressing (38 pins)
 - Address lines (31 pins)
 - Address modifier (6 pins)
 - Address Strobe (1 pin)
- Data (36 pins)
 - Data lines (32 pins)
 - Data Strobe (3 pins)
 - Data Ack. (1 pin)
- Interrupt (10 pins)
 - Level lines (7 pins)
 - Acknowledge (3 pins)

- Special (2 pins)
 - Write (1 pin)
 - Bus Error (1 pin)
- Total 86 of 192
- Not discussed
 - Multi master arbitration
 - SYS/AC Fail
 - Voltages and Ground
 - Rear transition module

Overview Physical Logical

Electrical Signals

- Most VME lines are direct connections between the same pin on every connector.
 - Exception: Interrupt Acknowledge daisy chain line (IACKIO).
- Two state logic
- Can be driven high (1) or low (0) by one (or more) VME devices.
- Lines float high when un-driven.
 - Control signals use inverted logic (True=0) for this reason.
 - eg. Address, data strobes, interrupt, and IACK.

Bus Addressing

- VME supports many different Addressing Modifiers.
- AM determines:
 - Address length (16, 24, or all 32 pins)
 - Selects process for read/write cycles.
 - Single cycle (Data mode)
 - Sequential (Block mode)
 - Permissions
 - supervisory/normal
 - Relic of original Motorola 68k
- Slave cards usually implement only some AMs.
- Does not specify data width

Overview Physical Logical

Address Modifiers

Code	Name	Address size	Priv.	Cycle type
0x3f	A24sB	24-bit	sup.	block
0x3d	A24sD	24-bit	sup.	data
0x3b	A24nB	24-bit	norm.	block
0x39	A24nD	24-bit	norm.	data
0x29	A16nD	16-bit	norm.	data
0×09	A32nD	32-bit	norm.	data
0×0B	A32nB	32-bit	norm.	block

2

イロト イヨト イヨト イヨト

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME

 Basics
 Overview

 Operations
 Data Mode Re

 Errors
 Data Mode W

 VMetro
 Interrupt

Signal Ordering

- VME bus has no clock.
- Each operation is a sequence of steps.
- A transition between steps is the rising/falling edge of a single control signal.
 - $\bullet\,$ eg. Most operations start on the $1\to 0$ transition of the address strobe line.

.

VME Operations

• VME bus supports many different operations. We will talk about the three most common.

Read Master takes data from Slave Write Master pushes data to Slave Interrupt Slave requests service from Master

• The following slides describe the single cycle (data mode) read/write operations. Block mode will not be discussed.

Single Cycle Read

- Operation to read data from a single address.
- Address modifiers: A16nD, A24nD, A32nD, A16sD, A24sD, A32sD
- Data widths: 8-bit, 16-bit, or 32-bit
- Master signals
 - Address Strobe
 - Address and Address modifer
 - Data strobes
- Slave signals:
 - Data Acknowledge
 - Data

Basics C Operations Errors D VMetro Ir

Data Mode Read Data Mode Write Interrupt

э

æ

Read Process

A Master requests data

- B Slave provides data
- C Master ends cycle

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus

Basics Ov Operations Da Errors Da VMetro Int

Data Mode Read Data Mode Write Interrupt

Read Process

A Master requests data

- Asserts Write line to false (1).
- Master sets Address and Addr. modifier.
- Uses data strobes to select data width.
- Master asserts $(1 \rightarrow 0)$ Address Strobe.

Basics Ov Operations Da Errors Da VMetro Int

Data Mode Read Data Mode Write Interrupt

Read Process

B Slave provides data

- Slave puts Data on Data lines.
- **2** Asserts $(1 \rightarrow 0)$ Data Acknowledge.
 - Master may release AS, addr, and AM after this point

Basics Or Operations Da Errors Da VMetro Int

Data Mode Read Data Mode Write Interrupt

Read Process

- C Master ends cycle
 - Master samples data lines
 - Master releases Data Strobe.
 - Slave releases DTACK and data lines.

э

Overview Data Mode Read Data Mode Write Interrupt

Control Signals

- Address Strobe
 - Controlled by Master
 - Asserted to trigger Slave action.
 - Released after DTACK asserted (by Slave)

Overview Data Mode Read Data Mode Write Interrupt

æ

3

Control Signals

• Data Strobe

- Controlled by Master
- Asserted before Address Strobe.
- Released after DTACK asserted (by Slave)

Overview Data Mode Read Data Mode Write Interrupt

Control Signals

Data Acknowledge

- Controlled by Slave
- Asserted after AS asserted (by Master)
- Asserted after Data lines driven (by Slave)
- Released after release of DS (by Master)

Overview Data Mode Read Data Mode Write Interrupt

With VMetro

ntroi Exerciser	rror szeroser igois Window Helb									
AnalyzerSeta	🔛 AnalyzerSetup1 🔝 Current Trace - VME TIMING Mode, Triggered at 50%									
Zoon 4										
Field	Field\Value (us->)0.0370.0000.0370.0750.1130.1500.1880.2250.263									
🐁 Booknark		ĺ.)							
BgL										
AddrPh	APh					X				
AM/XAM	A32sD					1				
A[31:0]	2000004					1	1			
D[31:0]	FFFFFFF			X	X I					
Size	D32					1				
Cycle	Rd					(
Status						X X				
Iack										
Fail										
AS*	0									
DS1*	0									
DS0*	0									
DTACK*	1									

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Overview Data Mode Read Data Mode Write Interrupt

With VMetro (2)

Zoos	•	≥ % ⊞ ·	ର ସେ ।	2 Z-T:	0.2	33us X-Y:	[-187.	5ns X-Z:	-232	5ns ¥-2		-45.	Ons				
	Saaple 🎭		AddrPh	AH/XAH			Size	Cycle	IRQ[7:1]*								DS0*	DTACK*
	-4	-30.0ns			20000004					1		0			1	1	1	1
	-3	-22.5ns			20000004					1		0			1	1	1	1
	-2	-15.0ns			20000004					1		0			1	1	1	1
	-1	-7.5ns			20000004				1111111	1		0			1	1	1	1
<u><u><u></u></u><u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	TRIG	0.0ns	àPh		20000004		D32	Rd		1		0			0	0		
	1	7.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	
	2	15.0ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	3	22.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	4	30.0ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	5	37.5ns	àPh		20000004		D32	Rd	1111111	1		0			0	0	0	1
-	6	45.0ns	APh		20000004		D32	Rd	1111111	1		0			0	0		1
	7	52.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0		1
	8	60.0ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	9	67.5ns	àPh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	10	75.0ns	APh		20000004		D32	Rd	1111111	1	1	0			0	0		1
	11	82.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	12	90.0ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	13	97.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	14	105.0ns	àPh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	15	112.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	16	120.0ns	àPh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	17	127.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	18	135.0ns	àPh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	19	142.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	20	150.0ns	àPh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	21	157.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	22	165.0ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	23	172.5ns	APh		20000004		D32	Rd	1111111	1		0			0	0	0	1
	24	180.0ns	APh		20000004		D32	Rd	1111111	1	1	0			0	0	0	1
	25 🐨	187.5ns			20000004		D32	Rd	1111111	1	1	0			0	0		
	26	195.0ns			20000004		D32	Rd	1111111	1		0			0	0		0
	27	202.5ns			2000000C				1111111	1		0			1	0		
	28	210.0ns			20000008				1111111	1		0			1	0		0
	29	217.5ns			20000008					1		0			1	0		0
	30	225.0ns			20000008					1		0			1	0	0	0
	31 🗷	232.5ns			20000008				1111111	1	1	0			1	0	0	0
	32	240.0ns			20000008					1		0			1	1	1	0
	33	247.5ns			20000008					1		0			1	1	1	0
	34	255.0ns			20000004					1		0			1	1	1	0
-	35	262.5ns			20000004	80000200			1111111	1	1	0			1	1	1	0

Michael Davidsaver mdavidsaver@bnl.gov

Single Cycle Write

- Operation to write data to a single address.
- Address modifiers: A16nD, A24nD, A32nD (also sup. modes)
- Data widths: 8-bit, 16-bit, or 32-bit
- Master signals
 - Address Strobe
 - Address and Address modifer
 - Data strobes
 - Data
- Slave signals:
 - Data Acknowledge

Write Process

э

æ

A Master provides data

- B Slave accepts data
- C Master ends cycle

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus

Write Process

A Master provides data

- Asserts Write line to true (0).
- Master sets Address and Addr. modifier.
- Sets Data and asserts Data Strobes.
- Master asserts Address Strobe.

Write Process

B Slave accepts data

- Slave samples Data.
- **2** Slave asserts $(1 \rightarrow 0)$ Data Acknowledge.
 - Master may release AS, addr, and AM after this point

< A

Write Process

C Master ends cycle

Master releases Data and Data Strobe.

• • • • • • • • • • • • •

(문) 문

Slave releases DTACK.

Basics Over Operations Data Errors Data VMetro Inter

Data Mode Read Data Mode Write Interrupt

Image: A mathematical states and a mathem

문 문 문

Control Signals

- Same order as Read cycle
- Different meaning

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus

Basics Over Operations Data Errors Data VMetro

VME Interrupts

- A VME interrupt is identified by two pieces of information.
 - Level: [1, 7]
 - Vector: [0, 255]
- Levels are physical wires.
- Vectors are read from the device interrupting a given level.
- The Interrupt Acknowledge cycle is similar to a normal data mode read cycle.
- IACK* is set and Address modifier is ignored
- \bullet Address bits $1 \to 3$ are used to indicate which level is being acknowledged

Overview Data Mode Read Data Mode Write

A (1) > A (2) > A

(문) 문

Interrupt Acknowledge Cycle

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME

Overview Data Mode Read Data Mode Write

IACKIO

- Each slot has 2 pins: IACKIN and IACKOUT
- The IACKOUT of slot N is connected to IACKIN of slot N+1.
- Non-interrupting devices pass IACKIN through to IACKOUT.
 - Interrupting devices do not.
- Empty slots must have IACKIN shorted to IACKOUT.
 - Newer crates do this automatically
 - Older crates must add/remove jumpers

Overview Data Mode Read Data Mode Write

- Higher levels are serviced first
- When two interrupters have the same level
 - First to receive IACKIN
 - Closest to Acknowledger on the right
- All four devices interrupt at the same time
- What order are they serviced in?

Slot	Slot	Slot	Slot	Slot	Slot
1	2	3	4	5	6
CPU	Level 2 Vec. 0x53		4 Vec.	4 Vec.	Level 2 Vec. 0x12

Overview Data Mode Read Data Mode Write

Interrupt Priority

- Higher levels are serviced first
- When two interrupters have the same level
 - First to receive IACKIN
 - Closest to Acknowledger on the right
- All four devices interrupt at the same time
- What order are they serviced in?

Slot	Slot	Slot	Slot	Slot	Slot
1	2	3	4	5	6
CPU	Level 2 Vec. 0x53		4 Vec.	4 Vec.	Level 2 Vec. 0x12

Slot 4

Overview Data Mode Read Data Mode Write

- Higher levels are serviced first
- When two interrupters have the same level
 - First to receive IACKIN
 - Closest to Acknowledger on the right
- All four devices interrupt at the same time
- What order are they serviced in?

Slot	Slot	Slot	Slot	Slot	Slot
1	2	3	4	5	6
CPU	Level 2 Vec. 0x53		4 Vec.	4 Vec.	Level 2 Vec. 0x12

- Slot 4
- Slot 5

Overview Data Mode Read Data Mode Write

- Higher levels are serviced first
- When two interrupters have the same level
 - First to receive IACKIN
 - Closest to Acknowledger on the right
- All four devices interrupt at the same time
- What order are they serviced in?

Slot	Slot	Slot	Slot	Slot	Slot
1	2	3	4	5	6
CPU	Level 2 Vec. 0x53		4 Vec.	4 Vec.	Level 2 Vec. 0x12

- Slot 4
- Slot 5
- Slot 2

Overview Data Mode Read Data Mode Write

- Higher levels are serviced first
- When two interrupters have the same level
 - First to receive IACKIN
 - Closest to Acknowledger on the right
- All four devices interrupt at the same time
- What order are they serviced in?

Slot	Slot	Slot	Slot	Slot	Slot
1	2	3	4	5	6
CPU	Level 2 Vec. 0x53		4 Vec.	4 Vec.	Level 2 Vec. 0x12

- Slot 4
- Slot 5
- Slot 2
- Slot 6

When something goes wrong

- VME operations are based on order.
- Control alternates between Master and Slave.
- When something unexpected happens, or doesn't happen, either party can assert a bus error.
- BERR aborts the current cycle and resets both Master and Slave so that a new cycle can begin.
- Most common error is read/write with no response.
 - Timeout waiting for DTACK.
 - Bad for performance
- Bus errors are not normal and should be investigated!

What do bus errors look like?

Read

- All bits set (0xffffffff)
- Extra bits set (0xf3ff0443)
- Write
 - Write has no effect
 - Readback gives unexpected value
- IACK
 - Interrupt on vector 0xff

Overviev Setup Stratagy

VMetro VME Bus analyzer

- What is it?
- ~200 channel logic analyzer
- Onboard processor w/ specific knowledge of VME Protocol
- Useful for
 - Non-invasive monitoring of software actions
 - How long does the ISR take?
 - How often is register X read?
 - When is value Y written to register Z?
 - Detecting VME operation errors
- Operates in State or Timing modes.
- The manual is surprisingly complete.
- http://www-cdfonline.fnal.gov/daq/commercial/VG-VME_User_Guide.pdf

<mark>Overview</mark> Setup Stratagy

State Mode

- Onboard monitoring of VME cycles
- Report summary of operations
 - A32 read from address X
 - A16 write to address Y
- Can buffer a large number of operations
 - Time depends on bus load
- Useful when debugging software

Overview Setup Stratagy

Timing Mode

- Directly store bus signals at sampling rate ($\leq 133MHz$)
- Reports timing
 - AS* became 0 at T_0
 - DTACK became 0 at $T_0 + 2\,\mu s$
- Buffers for a short (fixed) time
- Useful when debugging hardware

Overview Setup Stratagy

- The analyzer is constantly sampling like a DSO
- Triggers are specified by patterns involving real signals (AS*) and computed (Cycle type and Status).
- Triggers can be level or edge (0/1 or r/f)

Overview <mark>Setup</mark> Stratagy

- (E)

э.

- Uses TCP 24000
 - Also displayed on front panel
- ssh -L 24000:192.168.90.60:24000 controldev32

Overview Setup Stratagy

Connecting Through SSH

- Ensure that the VMetro has received an IP address by looking at the front panel LED display
- Start Busview software
- Since From Tools menu select Hardware Connection.
- Under the Advanced tab add an entry for 127.0.0.1 port 24000. Select a name of 'localhost' and click add. This only needs to be done once.
- In the *Devices* tab. Check next to 127.0.0.1 and click OK.
- The sequencer controls should now appear.

Overview Setup Stratagy

Connecting Through SSH (2)

evice Information					?
evices Advanced					
Device Select 127.0.0.1	Port 24000	Serial Number 1001723	Status Available	Name	
Address:		Port: 2	4000		∆dd
Name:				_	Defete Update
				OK	Cancel Rescan

Device Select	Туре	Port	Serial Number	Status	Name
Host exerciser (127.0.0.1 Simulator (127.0.0.1)		24002 24001	2	Available Available	Host Exe Simulator
Simulator (127.0.0.1)	ave aunulator	24001	1001723	Available	localhost

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@

Michael Davidsaver mdavidsaver@bnl.gov

Overview Setup Stratagy

Setup

Event:	BgL	Transfer	АМ/ХАМ	Address	Data	Size	Cycle	Status	WRITE*	AS*	LWORD*	IACKIO*
Anything	XXX	XX	XXXX	******	******	XXXXXX	хх	XXXX	х	x	х	х
/MEO*	XXX	XX	XXXX	******	*******	XXXXXX	Rd 💌	XXXX	х	x	х	ж
ME1	XXX	XX	XXXX	******	*******	XXXXXX	×× 🛧	XXXX	х	х	х	х
/ME2	XXX	XX	XXXX	XXXXXXXX	******	XXXXXX	XX	XXXX	х	x	ж	x
/ME3	XXX	XX	XXXX	XXXXXXXX	XXXXXXXX	XXXXXX	XX	XXXX	х	х	ж	х
/ME4	XXX	XX	XXXX	******	*******	XXXXXX	XX	XXXX	х	х	х	х
/ME5	XXX	XX	XXXX	XXXXXXXX	*******	XXXXXX	XX	XXXX	ж	x	ж	x
/ME6	XXX	XX	XXXX	******	*******	XXXXXX	XX	XXXX	х	х	х	х
/ME7	XXX	XX	XXXX	*******	******	XXXXXX	XX	XXXX	х	х	х	х
1b: S	tore (f (VME Trig	ampling i ALL) O) then ger at 50				S	TART					

イロト イヨト イヨト イヨト

2

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus

Overview Setup Stratagy

What to Look For?

- When first inspecting a new system, where to start?
- Check for Bus Errors
 - These should never happen.
- See what is happening most often
 - Does it need to?
 - Can it be more efficient?
- Interrupt handler run time
- All access of a specific register

Overview Setup Stratagy

When to Use

- Evaluating new hardware/driver
 - "But the manual says block mode reads should work."
- Performance measurements
 - Find targets for optimization
 - Measure bus time usage (idle and loaded)
- Wierd problems
 - "The CSR register is 0, but I'm sure I never set it to zero."
 - "Why do command errors only happen occasionally when we always send the same command"
 - "Spurious interrupt on vector 0xff"
- Learning
 - Until you know what it does, you won't know when to use it

Questions?

2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Michael Davidsaver mdavidsaver@bnl.gov Understanding VME Bus